Thermal Transistor for Energy Smart Buildings Los Alar

LA-UR-15-22359

This document is approved for public release; further dissemination unlimited

LA-UR-15-22359

Thermal Transistor for Energy Smart Buildings Los Alamos

Thin-film heat switch creates thermally active walls to enable energy-efficient buildings

BACKGROUND & MOTIVATION

The thermal properties of building walls are fixed by design

- · They cannot adapt to daily or seasonal temperature variations
- · These shortcomings require inefficient heating / cooling of inside air

INNOVATION

LANL Innovation: Thermal Transistor

Thin-film device that can change its thermal conductivity by >50 fold:

- · Made from non-toxic low-cost materials that are commercially available
- Low power consumption: ~0.5 W/sq.ft.
- Insulating: 0.06 W/K·m (fleece fabric)
- Conducting: >3 W/K·m (near metal)

DESCRIPTION

Concept: Thermally active building walls

- · Add a thermal transistors to building walls to enable agile heat management
- · Realize significant cost savings and reduction of greenhouse gases
- Thermal transistors fabricated in the form of large sheets that are integrated with conventional construction materials.
- System enables a building that can adapt to thermal changes in the environment by exploiting natural temperature gradients

How it works:

· Applying a voltage to the control electrodes induces motion in the fluid and allows for efficient heat transport Insulating: by convection. The fluid is static without a voltage and only minimally conducts heat.

Conducting: Heat transported to outside in hot weathe

Assumptions & Limitations:

- Current LANL prototype: ~50 cm² active area. Assume it can be scaled to so, ft size relevant for applications
- Switching requires ~200 Volts but only draws a few μA. The associated drive electronics comprises only off-theshelf components.

Current Technology Readiness Level (TRL) 4

 Individual components have been tested and a system level prototype has been tested and integrated in the lab

ANTICIPATED IMPACT

Thermally adaptive devices and systems may be a game changer in energy efficiency, buildings and beyond:

- · Thermally agile walls can enable significant cost savings and reduce greenhouse gases (high volume market)
- · Potential for flexible format that could be used in thermally active clothing (high volume market)
- Thermal transistors can find applications in the thermal management of highperformance computers
- LANL is currently developing thermal transistor technology for application on satellite platforms

PATH FORWARD

Demonstrate thermal transistor tile with 1 sq.ft. area:

- Quantitative thermal and electrical characterization
- Tested under applicable environmental conditions
- · IP protected and industrial partner identified.
- Cost model for mass production

Potential End Users:

· Construction companies (commercial and residential)

Point of Contact: Alex Mueller, Chemistry Division, Chemical Diagnostics & Engineering, 505-665-1737, Hehlen@lanl.gov

UNCLASSIFIED